
COMS 631 - Approximate Matrix Multiplication

Scribe: Raj Gaurav Ballabh Kumar

25th March 2019

1 Introduction

Running times for Matrix Multiplication algorithms that we know are:
O(n3)
O(n2.7) //Strassen’s Algorithm
O(n2.376)
O(n2.374)
O(n2.3728642)
O(n2.3728639)

With the current known techniques, we cannot hope to perform this in O(n2).
But can we do an approximate matrix multiplication in O(n2) time? This will
be the question we will be answering.

Given: 2 Matrices A and B, where A is a r×n matrix and B is a n× c matrix.
Goal: Approximate A · B

Definition 1.1. Frobenius Norm: For the purpose of this approximation we
will require to calculate the norm of a Matrix. Here we are going to use the
Frobenius Norm of a matrix. For a Matrix M, it’s Frobenius norm is represented
by ||M ||F .

||M ||F =

√∑
i

∑
j

M2
ij (1)

So, now the goal is to compute a Matrix C such that ||AB − C||F is small.
We introduce some notation that we will be using along the way,
Given a Matrix A:
Al

r: lth row of Matrix A
Al

c: l
th column of Matrix A

Then we can talk about the norm of only this row or column.
||Al

r||2 = L2 Norm of the vector with entries from the lth row = ||Al
r||F

||Al
c||2 = L2 Norm of the vector with entries from the lth column = ||Al

c||F
L2 norm is another norm of a vector that we saw in one of the previous lectures.

1

1.1 Alternative way to view Matrix Multiplication:

So, how do we actually perform Matrix Multiplication?
If we were multiplying A and B, the ijth entry of the resulting matrix would be
given by:
ABij = Ai

r ·Bj
c

So basically what we are doing is we are multiplying the ith row of A with the
jth column of B and then we sum it up,
We instead use a different way of multiplying 2 matrices. Instead of the above
method, we multiply the ith column of A with the jth row of B and then sum
it up. Notice that in this case we would be multiplying a r × 1 column vector
of A with a 1× c row vector of B.
Therefore each one of the n multiplications will give us an r × c matrix.
All of these n matrices will then have to be added together to get the final
resultant matrix A ·B.

Let’s show using an example that the method we are using is actually correct.
We use the same 2 matrices A and B we defined earlier.

A ·B =
a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

ar1 ar2 ar3 . . . arn

 ·

b11 b12 b13 . . . b1c
b21 b22 b23 . . . b2c
...

...
...

. . .
...

bn1 bn2 bn3 . . . bnc

 =

a11b11 a11b12 a11b13 . . . a11b1c
a21b11 a21b12 a21b13 . . . a21b1c

...
...

...
. . .

...
ar1b11 ar1b12 ar1b13 . . . ar1b1c

+

a12b21 a12b22 a12b23 . . . a12b2c
a22b21 a22b22 a22b23 . . . a22b2c

...
...

...
. . .

...
ar2b21 ar2b22 ar2b23 . . . ar2b2c

+ . . .+

a1nbn1 a1nbn2 a1nbn3 . . . a1nbnc
a2nbn1 a2nbn2 a2nbn3 . . . a2nbnc

...
...

...
. . .

...
arnbn1 arnbn2 arnbn3 . . . arnbnc

If we sum up all of the above n matrices we will in fact see that each ijth entry of
the resulting matrix will be equal to the corresponding ijth entry in the matrix
obtained by performing A ·B the normal way.
Hence our revised method for calculating matrix product is correct as well. This
is the key idea in this algorithm which we present below.

2

1.2 Key Idea:

A ·B =

n∑
l=1

Al
cB

l
r (2)

So now we have n matrices. We need to sum them up. Each individual product
takes O(rc) time. Summing them is going to take O(nrc) time. This is the
same time that it takes to exactly multiply 2 matrices. So we are not really
doing any better.

However, what we can do is that, instead of adding all of the n matrices to get
the final matrix, we randomly select k matrices and sum them up, where k < n,
thus taking only O(krc) time.

So now we have the following 3 questions that we have to answer:
- How do we decide k
- Once k is decided, how do we decide which k out of the n matrices do we add
- How good of an approximation does this give

1.3 A simpler problem:

Before we move onto the original problem, let us try and think about a simpler
problem instead.

Given: Bunch of numbers a1, a2, a3, . . . , an.
Goal: Compute the sum of these numbers.

- Can we use the sampling approach that we discussed earlier in order to solve
this problem as well?
- This is our initial algorithm

1.3.1 Algorithm 1:

1. sum = 0
2. for i = 1 to k
3. uniformly at random pick s ∈ {1, 2, 3, . . . , n}
4. sum = sum + as

5. output =
sum · n
k

6. return output

1.3.2 Analyzing Algorithm 1:

Let Xi be a RV.
where Xi is the value of as in the ith iteration.

3

∴ sum =
∑k

i=1Xi

∴ E[sum] = E[
∑k

i=1Xi] =
∑k

i=1E[Xi]

E[Xi] = Pr[Xi = a1] · a1 + Pr[Xi = a2] · a2 + . . .+ Pr[Xi = an] · an

=
a1

n
+
a2

n
+ . . .+

an

n

=

∑n
i=1 ai

n

∴ E[sum] = k ·
∑n

i=1 ai

n

∴ E[output] =
n

k
· k ·

∑n
i=1 ai

n
=
∑n

i=1 ai

The way that we have been designing algorithms so far has been as follows:
- We want to bound this number:

Pr(output of our algorithm is close to the true value)
- The way that we have been doing this is:

- we set up an algorithm such that its expected value is the true value
- then we try and bound the Pr(output of our algorithm is close to the
expected value)

However this technique is not going to work in this case because the variance in
this case is going to be very large. Consider the case where all elements are 0
except the last one which is 1 billion or something. If the algorithm never picks
the last element, your output is going to be 0.

One way to get around this problem is by changing the sampling technique.
Instead of doing uniform sampling, let us sample the numbers based on the
magnitude of those numbers, i.e. the larger number gets picked with a higher
probability and a smaller number gets picked with smaller probability.

1.3.3 Algorithm 2:

So suppose we have been somehow given a distribution P =< p1, p2, p3, . . . , pn >
over {1,2,3, . . ., n}, this would imply that 1 is picked with probability p1, 2 with
probability p2 and so on.

Now we modify our algorithm as follows:

1. sum = 0
2. for i = 1 to k
3. pick s ∈ {1, 2, 3, . . . , n} as per the distribution P

4. sum = sum +
as

ps

5. output =
sum

k
6. return output

4

1.3.4 Analyzing Algorithm 2:

Let Xi be the value of
as

ps
during the ith iteration.

sum =
∑k

i=1Xi

E[sum] = E[
∑k

i=1Xi] =
∑k

i=1E[Xi]

E[Xi] = Pr

[
Xi =

a1

p1

]
·
a1

p1
+ Pr

[
Xi =

a2

p2

]
·
a2

p2
+ . . .+ Pr

[
Xi =

an

pn

]
·
an

pn

= p1 ·
a1

p1
+ p2 ·

a2

p2
+ . . .+ pn ·

an

pn
=
∑n

i=1 ai
E[sum] =

∑k
i=1

∑n
i=1 ai = k ·

∑n
i=1 ai

E[output] =
sum

k
=
k ·
∑n

i=1 ai

k
=
∑n

i=1 ai

1.3.5 How to find P?

So now the question is how do we get hold of a good probability distribution P?
Try this:

P =

〈
a1∑n
i=1 ai

,
a2∑n
i=1 ai

, . . . ,
an∑n
i=1 ai

〉
The variance of this algorithm is going to be 0. This is because if you look at

our algorithm, every time we pick an s, we are adding
as

ps
to the sum. The value

of ps in the distribution labelled P is just
as∑n
i=1 ai

. Hence
as

ps
is just going to be∑n

i=1 ai, which is a fixed quantity. There is no randomness there.

So this distribution works perfectly! The only issue is that in order to get this
distribution, we need to calculate

∑n
i=1 ai, which is what we set out to do in the

first place. But the idea that we can draw from here is that the kind of answer
that our algorithm produces depends upon the type of distribution P that we
have with us. Now we carry over the same concept to our original problem of
Matrix addition.

The entire process can be described in brief as follows:
Sample k numbers → Scale them → Sum them up → Divide by k to take the
average

Sampling the numbers in the first step is the main step in this algorithm. If
we can come up with a good distribution, then our problem is solved. So let us
now see how we can come up with some good distribution in the case of Matrix
addition.

5

2 Carrying over the idea to Matrices:

Given 2 Matrices A and B, where A is a r × n matrix and B is a n× c matrix.
From equation 2 we have:

A ·B =

n∑
l=1

Al
cB

l
r = A1

cB
1
r +A2

cB
2
r +A3

cB
3
r + . . .+An

cB
n
r (3)

So now we have to sum up n matrices instead of n numbers. Using the same
analogy described in the previous section, we want to sample some k matrices
from these n matrices so that we can add and then scale the sum to get our
final sum.

We need to figure out a distribution and for this we will be using the Frobenius
norm that we described in equation 1.
Let Fi represent the Frobenius norm of the ith sum in equation 3.

Fi = ||Ai
cB

i
r||F (4)

Then the probability distribution that we use is:

Pi =
Fi∑n
i=1 Fi

(5)

Now how much time does computing this distribution P take?
The numerator can be calculated in O(rc) time. The denominator takes O(nrc)
time. But recall that we can perform the exact matrix multiplication in O(nrc)
time. So this doesn’t really help us much. Let us look at the summation of
denominator and see if we can come up with a better bound on it.

Consider 1 particular matrix.

A1
cB

1
r =

a11
a21
a31
...
ar1

 ·
[
b11 b12 b13 b14 . . . b1c

]

=

a11b11 a11b12 a11b13 . . . a11b1c
a21b11 a21b12 a21b13 . . . a21b1c

...
...

...
. . .

...
ar1b11 ar1b12 ar1b13 . . . ar1b1c

6

||A1
cB

1
r ||F

= (a11b11)2 + (a11b12)2 + (a11b13)2 + (a11b14)2 + . . .+ (a11b1c)
2 + //First row

(a21b11)2 + (a21b12)2 + (a21b13)2 + (a21b14)2 + . . .+ (a21b1c)
2 + //Second row

...
(ar1b11)2 + (ar1b12)2 + (ar1b13)2 + (ar1b14)2 + . . .+ (ar1b1c)

2 + //rth row

= a211(b211 + b212 + b213 + . . .+ b21c) +
a221(b211 + b212 + b213 + . . .+ b21c) +
...
a2r1(b211 + b212 + b213 + . . .+ b21c)

= (a211 + a221 + . . .+ a2r1)(b211 + b212 + b213 + . . .+ b21c)

= ||A1
c ||22 ||B1

r ||22
where ||A1

c ||22 is the square of the L2 norm of A1
c . Same for B1

r .

Note that now we can calculate the L2 norm for A1
c in time O(r) and for B1

r

in O(c), bringing the total time to calculate ||A1
cB

1
r ||F to O(r + c). For n such

matrices, the time now becomes O(n(r+ c)). This is a better estimate than our
earlier bound of O(nrc).

So this is how we define our probability distribution P =< p1, p2, . . . , pn > over
{1, 2, 3, . . . , n} now:

pl =
||Al

c||2 ||Bl
r||2∑n

i=1 ||Ai
c||2 ||Bi

r||2
(6)

Hence now we have a method to compute our probability distribution P specified
in equation 5 and 6 in time O(n(r + c)).

3 Algorithm

Now we state our algorithm that we will be using to compute the approximate
matrix multiplication:

3.1 Algorithm a:

Input: 2 Matrices A and B, where A is a r×n matrix and B is a n× c matrix.
A probability distribution P =< p1, p2, p3, . . . , pn > computed as in
equation 6.

1. Pick l as per distribution P

2. Output G = (Al
c ·Bl

r) ·
1

pl

7

Note: Al
c is a r × 1 matrix and Bl

r is a 1 × c matrix. Their product is a r × c

matrix, every entry of which is scaled by
1

pl
. This gives us the matrix G. The

expectation is that this matrix is going to be the same or atleast kind of the
same as the matrix obtained by A ·B.

3.2 Claim:

If we fix i, j, then E[Gij] = ABij . What this means is that the expected value
of each ijth entry in the matrix G is going to be the same as the corresponding
ijth entry in the matrix obtained by performing A ·B.

Proof:

E[Gij] = Pr[l = 1] ·
[
A1

c ·B1
r

p1

]
ij

+ Pr[l = 2] ·
[
A2

c ·B2
r

p2

]
ij

+ . . .+

Pr[l = n] ·
[
An

c ·Bn
r

pn

]
ij

= p1 ·
[
A1

c ·B1
r

p1

]
ij

+ p2 ·
[
A2

c ·B2
r

p2

]
ij

+ . . .+ pn ·
[
An

c ·Bn
r

pn

]
ij

= [A1
c ·B1

r]ij + [A2
c ·B2

r]ij + . . .+ [An
c ·Bn

r]ij

= [A ·B]ij

The notation probably need some explaining.
Gij - ijth entry in the matrix G[
A1

c ·B1
r

p1

]
ij

- ijth entry in the matrix obtained by multiplying A1
c · B1

r and

multiplying each entry by p1

3.3 Calculating Variance:

Now let us try and calculate the variance. In Section 1.3.2 we saw that it was
not possible to bound the variance. but can we do it here?

V ar[Gij] = E[(Gij)
2]− E2[Gij] ≤ E[(Gij)

2] (7)

E[(Gij)
2] = Pr[l = 1] ·

[[
A1

c ·B1
r

p1

]
ij

]2
+ Pr[l = 2] ·

[[
A2

c ·B2
r

p2

]
ij

]2
+ . . .+

Pr[l = n] ·
[[
An

c ·Bn
r

pn

]
ij

]2

= p1 ·
[[
A1

c ·B1
r

p1

]
ij

]2
+ p2 ·

[[
A2

c ·B2
r

p2

]
ij

]2
+ . . .+ pn ·

[[
An

c ·Bn
r

pn

]
ij

]2

8

=
1

p1
· [[A1

c ·B1
r]ij]

2 +
1

p2
· [[A2

c ·B2
r]ij]

2 + . . .+
1

pn
· [[An

c ·Bn
r]ij]

2

=
1

p1
· [Ai1 ·B1j]

2 +
1

p2
· [Ai2 ·B2j]

2 + . . .+
1

pn
· [Ain ·B1n]2

=

n∑
l=1

A2
ilB

2
lj

pl

∴ E[(Gij)
2] =

n∑
l=1

A2
ilB

2
lj

pl
(8)

Here Ail is the element at the ith row and lth column in the matrix A.

From equation 7 and 8 we get,

V ar[Gij] ≤
n∑

l=1

A2
ilB

2
lj

pl
(9)

3.4 Algorithm b:

1. Run algorithm a specified in Section 3.1 k times
2. Let G1, G2, . . . , Gk be the k matrices returned

3. H =

∑k
i=1Gi

k
4. return H

From equation 9 and algorithm b step 3, we get,

V ar[Hij] ≤
1

k
·

n∑
l=1

A2
ilB

2
lj

pl
(10)

3.4.1 Analyzing Algorithm b:

Let us look at E[||H − AB||2F]. We are representing the matrix resulting from
A ·B by AB. So ABij means the ijth entry in A ·B.

E[||H −AB||2F]

= E[
∑r

i=1

∑c
j=1[(H −AB)ij]

2] //From equation 1

= E[
∑r

i=1

∑c
j=1[(Hij −ABij)]

2]

=
∑r

i=1

∑c
j=1E[(Hij −ABij)

2] //By linearity of expectations

9

=
∑r

i=1

∑c
j=1E[(Hij − E[Hij])

2] //From claim 3.2 and our definition of H in
//Algorithm b, step 3.

=
∑r

i=1

∑c
j=1 V ar(Hij) //From definition of Variance

∴ E[||H −AB||2F] =

r∑
i=1

c∑
j=1

V ar(Hij) (11)

From equations 10 and 11 we can now write:

E[||H −AB||2F]

≤
1

k
·

r∑
i=1

c∑
j=1

n∑
l=1

A2
ilB

2
lj

pl

=
1

k
·

n∑
l=1

1

pl

r∑
i=1

c∑
j=1

A2
ilB

2
lj

=
1

k
·

n∑
l=1

1

pl

r∑
i=1

A2
il

c∑
j=1

B2
lj

=
1

k
·

n∑
l=1

1

pl

r∑
i=1

A2
il ||Bl

r||22 //From our definition of ||Bl
r||2 on page 1

=
1

k
·

n∑
l=1

1

pl
||Bl

r||22
r∑

i=1

A2
il

=
1

k
·

n∑
l=1

1

pl
||Bl

r||22 ||Al
c||22 //From our definition of ||Al

c||2 on page 1

=
1

k
·

n∑
l=1

∑n
i=1 ||Ai

c||2 ||Bi
r||2

||Al
c||2 ||Bl

r||2
||Bl

r||22 ||Al
c||22 //From 6

=
1

k
·

n∑
l=1

(n∑
i=1

||Ai
c||2 ||Bi

r||2
)
||Al

c||2 ||Bl
r||2

=
1

k
·
(n∑

i=1

||Ai
c||2 ||Bi

r||2
) n∑

l=1

||Al
c||2 ||Bl

r||2

=
1

k
·
(n∑

i=1

||Ai
c||2 ||Bi

r||2
)2

≤
1

k

∑n
i=1 ||Ai

c||22 ·
∑n

i=1 ||Bi
r||22 //Cauchy Schwartz Ineq: (

∑
aibi)

2 ≤
∑
a2i
∑
b2i

10

=
1

k
||A||2F ||B||2F

∴ E[||H −AB||2F] ≤
1

k
||A||2F ||B||2F (12)

3.4.2 Bounding the error probability:

Now let us try and bound the probability that the result obtained by the Algo-
rithm b is greater than some fixed quantity i.e. we want to bound the probability
Pr[||H−AB||F > ε·||A||F ·||B||F]. Ideally we would have wanted to bound this
probability instead: Pr[||H −AB||F > ε · ||A ·B||F]. But we do not know how
to do this. Hence we will have to settle for the first one instead. ||A||F · ||B||F
and ||A ·B||F can be related by using the following inequality:

||A ·B||F ≤ ||A||F · ||B||F
Hence the first bound would work, it’s just that it won’t give us the tight bound
we would have hoped to get.

Using Markov’s Inequality we get:

Pr
[
||H −AB||F > ε · ||A||F · ||B||F

]
≤
E[||H −AB||F]

ε · ||A||F · ||B||F
(13)

Now we want to use equation 12 and 13 to get some bound. But notice that in
equation 12 we have E[||H −AB||2F] whereas in equation 13 we have
E[||H −AB||F].

To find the relation between the expected value of a RV and the expected value
of the square of the RV, we use Jensen’s inequality:

E2[X] ≤ E[X2] (14)

From 12 and 14, we get(
E[||H −AB||F]

)2
≤

1

k
||A||2F ||B||2F

∴ E[||H −AB||F] ≤
1
√
k
||A||F ||B||F

From equation 13, we get

Pr
[
||H −AB||F > ε · ||A||F · ||B||F

]
≤

1

ε · ||A||F · ||B||F
·

1
√
k
||A||F ||B||F

∴ Pr
[
||H −AB||F > ε · ||A||F · ||B||F

]
≤

1

ε
·

1
√
k

∴ Pr
[
||H −AB||F > ε · ||A||F · ||B||F

]
≤

1

ε
√
k

(15)

11

In order for this probability to be small, we want:

Pr
[
||H −AB||F > ε · ||A||F · ||B||F

]
≤ δ

=⇒
1

ε
√
k
≤ δ

=⇒ k ≥
1

ε2δ2

∴ k ≥
1

ε2δ2
(16)

where
- k was the number specified in step 1 of Algo b specified in Section 3.4
- δ is something small like 0.0001.

Time taken to run algorithm a: O(rc)
Repeating k times.
∴ Time taken to run algorithm b: O(krc)
Total time taken = Time taken to compute probability distribution P + Time
taken to run algorithm b = O(krc) +O(n(r + c))

3.4.3 Tuning the (ε, δ) parameters:

ε is the approximation error and δ is the probability error. Typically we want δ to
be very small (think 10−6) since it represents the probability that our algorithm
will fail to produce a result such that [||H − AB||F < ε · ||A||F · ||B||F]. So if
the denominator contains δ2, the resulting value of k computed as per equation
16 might be very large, in fact probably larger than n. Recall that the exact
matrix multiplication took O(nrc) time and the idea was to do approximate
matrix multiplication in O(krc) time where k < n. So if k becomes greater
than n, then there is no point of doing whatever it is we are doing.

We have seen some similar kinds of problems before, where in order to make error
probability arbitrarily small, we first get a bound with a fixed error probability,
like δ = 1/3, and then repeat the algorithm multiple times. If we fix δ = 1/3,
from equation 16 we get k ≥ O(1/ε2). We cannot really hope to avoid the
dependency on ε because as we reduce the approximation error, we should be
prepared to spend more time. In the earlier problems, we had to compute the
output of a function. We repeated the algorithm l times and selected the output
that appeared the majority of the times as our final answer. By taking the value
of l to be 1/ log δ, we were able to reduce the error probability to some arbitrary
value of δ.

If we were to carry over the same technique to our case, we would run into
issues. Suppose we ran Algorithm b l times. Let the output of each of those l
runs be H1, H2, . . . Hl. What do we even mean by taking the majority of these
l matrices? It does not make any sense. Recall that when say that we are going

12

to approximate a matrix, what we really mean is that we are creating a new
matrix whose Frobenius Norm is close to the original matrix.

3.5 Algorithm c:

Run algorithm b l times
Let each of the l outputs be H1, H2, H3, . . . ,Hl

1. for i = 1 to l
2. for j = 1 to l
3. compute ||Hi −Hj ||F
4. check if ||Hi −Hj ||F < ε · ||A||F · ||B||F
5. pick Hs for which this check succeeds ≥ l/2 times
6. output Hs

3.5.1 Why does this work:

What is δ? It says that if I run my algorithm b, the probability that for the
output matrix H, [||H − AB||F > ε · ||A||F · ||B||F], is δ. In algorithm c, I
have fixed my δ to be 1/3 (by choosing a fixed value of k in equation 16). This
means, on an average, l · (2/3) of the output Hi’s are going to have an error that
is lesser than ε · ||A||F · ||B||F]. If 2/3 of Hi’s satisfy the property, then surely
1/2 of the Hi’s are also going to satisfy it. So at least half of the matrices from
H1 to Hl are going to be good (error lesser than ε · ||A||F · ||B||F]).

If the check in step 4 is satisfied for some particular Hi for greater than l/2
times, it means that we have succeeded in finding one of those “good” matrices.
That is enough for us and we can return that matrix, Hs as the final answer to
our algorithm c.

3.5.2 Time taken:

Algorithm b takes O(krc+ (r + c)n) time where k = O(1/ε2)
In algorithm c, we are repeating this l = log 1/δ times. The pair wise compar-
isons in steps 1-6 take O(log2 1/δ) time.

∴ Total Time Taken = O
((1

ε2
· rc+ (r + c)n

)
log

1

δ
+ rc log2 1

δ

)
If r = c = n

Time = O
((1

ε2
· n2 + n2

)
log

1

δ
+ n2 log2 1

δ

)
= O

(1

ε2
· n2 log2 1

δ

)
This was assuming failure probability δ ≤ 1/3.

If you want to generalize it to δ, k = O
(1

ε2
log

1

δ

)

13

	Introduction
	Alternative way to view Matrix Multiplication:
	Key Idea:
	A simpler problem:
	Algorithm 1:
	Analyzing Algorithm 1:
	Algorithm 2:
	Analyzing Algorithm 2:
	How to find P?

	Carrying over the idea to Matrices:
	Algorithm
	Algorithm a:
	Claim:
	Calculating Variance:
	Algorithm b:
	Analyzing Algorithm b:
	Bounding the error probability:
	Tuning the epsilon, delta parameters:

	Algorithm c:
	Why does this work:
	Time taken:

